Étude cinétique de la dismutation de l'eau oxygénée (Réunion 2007 )

 

L'eau oxygénée commerciale est une solution aqueuse de peroxyde d'hydrogène utilisée comme désinfectant pour des plaies, pour l'entretien des lentilles de contact ou comme agent
de blanchiment. Le peroxyde d'hydrogène (H2O2) intervient dans deux couples oxydant-réducteur : H2O2 (aq) / H2O(l)

et O2 (g) / H2O2 (aq).

Le peroxyde d'hydrogène est capable dans certaines conditions de réagir sur lui-même c'est à
dire de se dismuter selon l'équation de réaction suivante :

Réaction 1

 
 


2 H2O2 (aq) = 2 H2O(l) + O2 (g)

 

Cette réaction est lente à température ordinaire mais sa vitesse peut être augmentée en présence d'un catalyseur.

 

Données :

Volume molaire des gaz dans les conditions de l'expérience : Vm  25 L.mol-1.

La partie 3 est indépendante des parties 1 et 2.

 

Partie 1 : Étude de la réaction de dismutation

 

1.             Écrire les deux demi-équations d'oxydoréduction des deux couples auxquels le peroxyde d'hydrogène appartient. Ecrire le nom de chaque demi réaction (réduction ou oxydation) en expliquant pourquoi.

 

2.             Quel  est  l’oxydant et le réducteur de la demi équation d’oxydation ?  Expliquer pourquoi.

 

3.             Dessiner le tableau d'évolution du système  On exprimera la quantité de matière de O2 en fonction du volume de O2 et du volume molaire.

 

Partie 2 : Détermination de la concentration initiale de la solution de peroxyde                  d'hydrogène

 

L'eau oxygénée du commerce se présente en flacons opaques afin d'éviter que la lumière
favorise la transformation chimique précédente. Le flacon utilisé dans cette étude porte la
mention suivante : eau oxygénée à 10 volumes. Cette indication est appelée le titre de l'eau oxygénée. Par définition, le titre est le volume de dioxygène (exprimé en litres) libéré par un litre de solution aqueuse de peroxyde d'hydrogène suivant la réaction de dismutation dans les conditions normales de température et de pression (réaction 1). On considérera, en première approximation, que les conditions de l'expérience sont assimilables aux conditions normales.

Avant de réaliser le suivi cinétique de la réaction de dismutation, on désire vérifier l'indication
donnée sur le flacon concernant le titre de l'eau oxygénée de la solution commerciale utilisée.

 

1.      Calcul de la valeur attendue de la concentration en peroxyde d'hydrogène.

1.1.  Par définition du titre de l'eau oxygénée, quel volume de dioxygène V(O2) serait libéré par un volume V = 1,00 L de la solution commerciale au cours de la réaction de
dismutation du peroxyde d'hydrogène ? Calculer la quantité de dioxygène formé au cours de cette transformation.

1.2.  (1 point) La transformation précédente étant considérée comme totale, vérifier que la concentration en peroxyde d'hydrogène notée [H2O2]th de cette solution commerciale
(valeur théoriquement attendue) a pour valeur :  [H2O2]th = 8,0 ´ 10 -1 mol.L-1.

2.      Détermination de la valeur réelle de la concentration en peroxyde d'hydrogène.

Pour vérifier la valeur de la concentration précédente, on réalise le titrage d'un volume
V
0 = 10,0 mL de cette solution par une solution de permanganate de potassium acidifiée de concentration en soluté C1 = 2,0 ´ 10 -1 mol.L-1. Les couples oxydant-réducteur intervenant au
cours du titrage sont MnO4 (aq) / Mn2+(aq) et O2 (g) / H2O2 (aq). Le volume de permanganate de potassium versé pour obtenir l'équivalence est Veq =14,6 mL.

L'équation de la réaction de titrage est la suivante :

Réaction 2

 
 


5 H2O2 (aq) + 2 MnO4- (aq) + 6 h3o+(aq) = 5 O2 (g) + 2 Mn2+(aq) + 14 H2O (l)

 

 

2.1.  L'ion permanganate MnO4 (aq) donne une coloration violette aux solutions aqueuses qui le contiennent. Comment l'équivalence est-elle repérée au cours du titrage ?

 

2.2.  Quelle relation peut-on écrire entre la quantité initiale de peroxyde d'hydrogène se trouvant dans le bécher n0(H2O2) et la quantité d'ions permanganate introduits dans le
bécher à l'équivalence neq(MnO4-) ?

 

2.3.  Donner l'expression de la concentration en peroxyde d'hydrogène de la solution commerciale [H2O2]exp en fonction de C1, V0 et Veq.

 

2.4.  Montrer que l'on a : [H2O2]exp = 7,3 ´ 10 -1 mol.L-1.

 

2.5.  Comparer à la valeur obtenue à la question 1.2. Les erreurs de manipulation mises à part, comment peut-on expliquer l'écart de concentration obtenu ?

 

2.6.  Dessiner le schéma du dosage en nommant le matériel utilisé.

 

Partie 3 : Étude cinétique de la dismutation du peroxyde d'hydrogène

La dismutation du peroxyde d'hydrogène est une réaction lente mais qui peut être accélérée en utilisant par exemple des ions fer III (Fe3+ (aq)) présents dans une solution de chlorure de fer III,
un fil de platine ou de la catalase, enzyme se trouvant dans le sang.L'
équation de la réaction associée à cette transformation est donnée dans l'introduction (réaction 1).La transformation étudiée est catalysée par les ions fer III. On mélange 10,0 mL de la solution commerciale d'eau oxygénée avec 85 mL d'eau. À l'instant t = 0 s, on introduit dans le système 5 mL d'une solution de chlorure de fer III. Au bout d'un temps déterminé, on prélève 10,0 mL du mélange réactionnel que l'on verse dans un bécher d'eau glacée. On titre alors le contenu du bécher par une solution de permanganate de potassium afin de déterminer la concentration en peroxyde d'hydrogène se trouvant dans le milieu réactionnel .On obtient les résultats suivants :

t(min)

0

5

10

20

30

35

[H2O2] mol.L-1  

7,30´10-2

5,25´10-2

4,20´10-2

2,35´10-2

1,21´10-2

0,90´10-2

 

1.      Tracer sur la feuille de papier millimétré à remettre avec la copie l'évolution de la
concentration en peroxyde d'hydrogène en fonction du temps.

Échelles :      en abscisses 2 cm pour 5 min ; en ordonnées 2 cm pour 1 ´ 10-2 mol.L-1

Ne pas oublier :

a) de mettre un titre à la courbe

b) de nommer les axes ainsi que les unités des grandeurs associées

c) la forme des croix est : +

2.      En utilisant le tableau d'évolution du système proposé en annexe, exprimer
l'avancement de la transformation x(t) en fonction de nt(H2O2) quantité de peroxyde
d'hydrogène présent à l'instant t et de n0(H2O2) quantité initiale de peroxyde d'hydrogène.